Faster Fully Homomorphic Encryption: Bootstrapping in Less Than 0.1 Seconds
نویسندگان
چکیده
In this paper, we revisit fully homomorphic encryption (FHE) based on GSW and its ring variants. We notice that the internal product of GSW can be replaced by a simpler external product between a GSW and an LWE ciphertext. We show that the bootstrapping scheme FHEW of Ducas and Micciancio [14] can be expressed only in terms of this external product. As a result, we obtain a speed up from less than 1 second to less than 0.1 seconds. We also reduce the 1GB bootstrapping key size to 24MB, preserving the same security levels, and we improve the noise propagation overhead by replacing exact decomposition algorithms with approximate ones. Moreover, our external product allows to explain the unique asymmetry in the noise propagation of GSW samples and makes it possible to evaluate deterministic automata homomorphically as in [16] in an efficient way with a noise overhead only linear in the length of the tested word. Finally, we provide an alternative practical analysis of LWE based scheme, which directly relates the security parameter to the error rate of LWE and the entropy of the LWE secret key.
منابع مشابه
Faster Bootstrapping of FHE over the Integers
Bootstrapping in fully homomorphic encryption (FHE) over the integers is a homomorphic evaluation of the squashed decryption function suggested by van Dijk et al. The typical approach for the bootstrapping is representing the decryption function as a binary circuit with a fixed message space. All bootstrapping methods in FHEs over the integers use this approach; however, these methods require t...
متن کاملLarge FHE gates from Tensored Homomorphic Accumulator
The main bottleneck of all known Fully Homomorphic Encryption schemes lies in the bootstrapping procedure invented by Gentry (STOC’09). The cost of this procedure can be mitigated either using Homomorphic SIMD techniques, or by performing larger computation per bootstrapping procedure. In this work, we propose new techniques allowing to perform more operations per bootstrapping in FHEW-type sch...
متن کاملFaster Bootstrapping with Multiple Addends
As an important cryptographic primitive in cloud computing and outsourced computation, fully homomorphic encryption (FHE) is an animated area of modern cryptography. However, the efficiency of FHE has been a bottleneck that impeding its application. According to Gentry’s blueprint, bootstrapping, which is used to decrease ciphertext errors, is the most important process in FHE. However, bootstr...
متن کاملImplementing Gentry's Fully-Homomorphic Encryption Scheme
We describe a working implementation of a variant of Gentry’s fully homomorphic encryption scheme (STOC 2009), similar to the variant used in an earlier implementation effort by Smart and Vercauteren (PKC 2010). Smart and Vercauteren implemented the underlying “somewhat homomorphic” scheme, but were not able to implement the bootstrapping functionality that is needed to get the complete scheme ...
متن کاملSomewhat Practical Fully Homomorphic Encryption
In this paper we port Brakerski’s fully homomorphic scheme based on the Learning With Errors (LWE) problem to the ring-LWE setting. We introduce two optimised versions of relinearisation that not only result in a smaller relinearisation key, but also faster computations. We provide a detailed, but simple analysis of the various homomorphic operations, such as multiplication, relinearisation and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016